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ABSTRACT

The angle * which the free boundary of an extreme wave makes with the

horizontal is the solution of a singular, non-linear integral equation that

does not fit (as far as we know) into the theory of compact operators on

Banach spaces. It has been proved only recently that solutions exist and that

(as Stokes suggested in 1880) these solutions represent waves with sharp

crests of included angle 2w/3. In this paper we use the integral equation,

known properties of solutions and the technique of the Mellin transform to

obtain the asymptotic expansion

k n lk
s) + I +o(s ) as s 0 , (*)6 nnui

to arbitrary orderl the co-ordinate s is related to distance from the crest

as measured by the velocity potential rather than by length. The first few

(and probably all) of the exponents Un are transcendental numbers. We are

unable to evaluate the coefficients an explicitly, but define some in terms
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of global properties of f, and the others in terms of earlier

coefficients. The derivation of (*) includes an assumption about a question

in number theory; if that assumption should be false, logarithmic terms
U, n( , )

a s(log s)n with iann j a positive integer, would enter the series at

very large values of n.

Our results confirm the heuristic calculations of Grant (4] and Norman
'a

[9], and, in effect, remove a tentative element from certain statements in-'.

V those papers.
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7.

SIGNIFICANCE AND FXPLANATION

This paper concerns waves of permanent form on the free surface of an

ideal liquid which is in two-dimensional, irrotational motion under the action

of gravity. We consider only extreme waves, often called 'waves of greatest

height'i each 'of these is the end-member of a one-parameter family of waves,

and is distinguished from other 'smaller' members of the family by a sharp

creste e4aia. Although this corner is physically unrealistic,

oceanographers have given such idealized, extreme waves a great deal of

attention since Stokes postulated their existence in 1880. (One reason may be

the physical importance of the smaller waves, and that scientists like to

interpolate.)

The present paper is a contribution to the strict mathematical theory of

extreme waves, which has emerged only since 1978. We derive rigorously an

asymptotic series that describes the flow near the crest. This confirms and

*sharpens certain earlier exploratory results due to Grant "-4 nd Norman. ot+.

The series should play a useful part in numerical computation of extreme

waves.

II

The responsibility for the wording and views expressed in this descriptive

summary lies with MRC, and not with the authors of this report.
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ON THE BEHAVIOR NEAR THE CREST OF WAVES OF EXTREdE FORM

C. J. Amick
1 
and L. E. Fraenkel

2

1. Introduction

This paper concerns gravity waves, of permanent and extreme form, on the free surface

of an ideal liquid, the flow being two-dimensional, irrotational and in a vertical plane.

By a wave of extreme form we mean one that is the 'largest' member of a one-parameter

family of such waves, and is characterized by a sharp crest of included anqle 2w/3, as

*" shown in Figure 1(a). The existence of such waves was conjectured by Stokes in 1880 and

has been proved recently. (For a fuller account, see the Introduction to [1]t for back-

ground material, see [83.)

letting * denote the local wave angle (that is, the angle which the free boundary

makes with the horizontal$ *(a) - tan- V (x) in the notation of Figure 1), we shall seek

the behavior as a * 0 of a solution * of the equation

*(a) - o(s,t) v(t) sin f(t) dt, 0<s(w , (1.1)

3 i v min*

where

tan - + tan - t
(s,t) -;log t

Itan - tan

and

vit) (C08 Coo jt + bsin2 It) /2

for some b @ [0,11 which we regard as fixed henceforth. Here ]0 v sin * stands for

It v(u)sin 4(u)dui such abbreviations will be used throughout the paper. Equation (1.1)

refers only to waves of extreme form the end-value of a parameter has already been chosen.
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The significance of the weighting function v is that v(s) = -C as, where C is a

positive constant and * denotes the velocity potential, the constant b distinguishes

the families mentioned earlier: b = 0 corresponds to solitary waves (of infinite wave-

length and in liquid of finite depth), b e (0,1) to periodic waves in liquid of finite

depth, and b - I to periodic waves in liquid of infinite depth.

By a solution of (1.1) we mean a function * satisfying the equation pointwise and

such that

0 < *(s) < 2 on (0,I), (w) - 0 * is real analyti
-#.n-ra nltc (1.2)

on 0,1, and *(a) + as a + 0

Such solutions are now known to exist ([1], [21, [3], [7], [131).

There have been many proposals for calculating the shape of the free boundary of an

extreme wave by a combination of analytical and numerical methods (long lists of references

are given in (5) and [14]). Such calculations were given a new direction by Grant [41, who

sought the second term of an asymptotic expansion of z(X) for X 
+ 

0 (here z - x + iy

denotes the complex co-ordinate in the physical plane, and X = * + iT the complex

potential), the first term being given by Stokes's corner flow. Grant pointed out that the

second term must have an exponent that is irrational and 'probably transcendental'i he

concluded that 'the structure near the corner is considerably more complicated than has

been assumed in the past'. Norman [9) contemplated terms beyond the two considered by

Grant, inferred the nature of all the exponentsi introduced the assumption that the numbers

. defined after (1.3) below, are linearly independent over the rationals, and

established certain relationships between the coefficients of the series. (However, it

seems that no coefficient after the first can be calculated by a merely local analysis.)

Longuet-Higgins and Fox [5], [6] used the exponents and functions arising in the work of

Grant and Norman as one part of their theory of waves near an extreme one (the crest being

smooth but of very large curvature).

All these calculations were heuristic rather than rigorous; in particular, Grant (4]

and Norman [9] were concerned only to find analytic functions Mix) that satisfy the non-

-2-
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linear boundary condition of the problem in an asymptotic sense as 4 + 0. In this paper

we proceed from (1.1) and (1.2) to prove that, subject to an assumption about a question in

number theory to be explained presently,

0(s) a as s + 0 (1.3)
6 n nn- I

The exponents Pn depend on the positive zeros B1, B2 , B3 ,..., with B0 < *J+1, of

3(1+0) - tan(Bw/2)i the Bj are essentially the numbers discovered by Grant [4], and

81 = 0.8027, 02 = 2.9066. As Grant thought probable, and as we prove in the Appendix, each

0 is a transcendental number. Each exponent Un  is a finite linear combination, with

positive integer coefficients, of numbers in the set (2,0,0, ...}, and contains at least

one B J. The u are ordered by P n<P 1  (as the symbol - of asymptoticity in (1.3)

implies), the first few are 01, 2010 3010 81 + 2, B2 F 40 1 , 281 + 2, 01 + 02# 50 1 ,

30 1 + 2, 201 + 02f ....

The assumption made in the derivation of (1.3) is stated precisely in Section 41 here

we remark that it certainly holds if the set (1,01f, 2...) is linearly independent over

the rationale. Moreover, numerical calculation indicates that the assumption is true for

the first hundred of the slightly larger set of exponents arising In the derivation of

(1.3). If the assumption should be false, then our method would still be applicable, but
U n 0n , j ,

logarithmic terms a n,s n (log s) with n, j  a positive integer, would enter the

series at large values of n.

We cannot evaluate the coefficients an in (1.3) when n e (1 0 20 3....I we

define such coefficients by integrals involving the global behavior of 0. When

Un 4 (01,0263,...), the corresponding coefficient an is determined by the previous

coefficients a 1 ... ,an_1: this agrees with Norman's results in (9).

The expansion (1.3) can be transformed and integrated to yield

1/3,i iX) 2
/
3 ( +as X 0 (1.4)

ZOO) ~-ig { + } b (1.4)n

n-1

where the constant g is the gravitational acceleration, arg(iX ) e I-n/2,%/2), and the

coefficients bn are real. If the set 1,A1 , 2,...1 is linearly independent over the

rational., then bn 0 whenever the linear combination defininq Un contains a multiple

-3-

. . . . . . . . , , . .,%

%. %. V

e. %-5 , .. .', ;, '%... ,. % %'.'.--,', _ ....... ... . . - ,... .. -"'' -- ''- ' I ..'" "" " " ". " -, " " ' ' ";" " ",","". .. " ""' ", "'."."". "."'"'-"'- ".'- , '."'',," "',,""



-.- %m -V -. -7* -.. -7 7. _w -.. . . . . . - -W i

of 2. The expansion (1.4) is then of the form proposed by Norman [9], if we interpret

liberally certain tentative remarks in that paper (for example, that it is 'possible to

consider solutions ... corresponding to combinations of terms from several roots' of

3(1+0) = tan($'/2)).

The plan of the paper is as follows. We begin Section 2 by making the transformation

- tan I a, O(M) - (2 C) in order to obtain a kernel k(g,n) that is simpler than
2is

(s,t). (In effect, we map the unit disk in the plane of r - Pe onto the half-plane

(0 - a + i& t a < 01 by the conformal transformation w - ( -1)/( +1).) Since *(s )

(tan - s), an asymptotic expansion of (C) for E + 0 yields one of O(s) for

s + 0. The next step is less obviousl we cast the integral equation (2.1) for *(C) into

a form, (2.10), that contains an elaborate non-linearity but has the virtue of allowing us

to construct the expansion of (C) by an inductive process. To begin this process, we

a (1 3,
show that *(C) - w/6 - 0CC ) for acme as e2 i)

In Section 3 we combine this preliminary estimate with the use of the Mellin transform

to show first that
61

*(CI 6 + AlC + O 1c 1 
as C + 0 (1.5)

for any i e (61,1), and then that this result implies the improved approximation

61 2B1*(C) " + Al C A2C +. 0CC ) as C * 0 (1.6)

for any a e (26 1,6 + I)i here A is a known function of Al .

The step from (1.5) to (1.6) points the way to the long inductive proof, in Section 4,

of the main results of the paper, which appear in Theorem 4.5 and Corollaries 4.6 and

4.7. The Appendix concerns some properties of the numbers S J,

-4-
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2. Preliminary transformations and estimates

1 1 -1
Under the transformation C = tan 1 s, n a tan - t and (&) C *(2 tan -)

22

equation (1.1) becomes

;. I( 1 
=

n) wlrn ) sin dn, 0 < & < * , 2.1)

3 Jn~ w sin*

where

k(&,n) log and w(n) = (1 + n2) 1/2 1 + bn2  1/2

By a solution of (2.1) we mean a function * satisfying (2.1) pointwise and such that

0 < *(C) M on (0,-), (E) = O(,
1
) as C + -, 4 is real-analytic

2
(2.2)

on (0,-), and *( 1) + as E + 0
6

It is to be understood henceforth that E e (0,-). Occasionally we set C = 0, with the

implication that *(0) - w/6 and * e C(o,-) (even though in the original problem * is

an odd function on R\{0)).

combining (2.1) and the formula ((1], p. 197)

k(E,n) -1 n

we obtain

- - - j k(C,-,n) log{~ J0 w sin *ldn

for any constant C > 0. Define

M(f,) - (C) - , (Ey)(n) - 2w(n) sinfl + y(n)) , (2.3)

then

1 1=  k( l log{. J0 Ey}dn •121
IC) k(&,n) Llg_ nLYdn(2.4)

Our next transformation of the equation is more elaborate; it involves the integrated

kernel (used extensively in (1])

q(C'i1) E C~~nd f& log En+ n log E2-2

0) k(tn)dt T 7n nn

with

q (lE,nl = !-log E2n '
n 22

and the non-linear operator F defined by

le -5-
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(F'Y)(fl) =logO. J0 KCY) + fn - I (2.5a)

d n
, [- i loqf f0 y)) - (2.Sb)

The u'nction Fy is important throughout the paper; we note its behavior for n * 0 and

for n + -. By the definition (2.3),

/3 (T1 +O~yvI
2  2(Fy)(n) - 1 + / Y(n) + O(Y(n) + n ) as n + 0 , (2.6)

and it follows from either form of (2.5) that

(FY)(n) _ 3 Y(n) + O(y(n)2 + n2) as n + 0 (2.7)

We claim that

0 < I y ( in y • const., 1 4( n < (2.8)

where the constant depends on Y. The lower bound follows from (2.6), in which y(R) + 0

as ni + 0, and because (L')(E) 0 on (0.-) by (2.2). For the upper bound we have

J0 y ( 2 J 0 *In)(1+i2 )/ dn - 1' *(t) sec 1 dt <

by [3], p. 657, if b 0 (0,1], and by (2], Theorem 4.7(a), for the case b - 0 of a

'solitary wave. Also, n(EY)(11) is bounded because i(nr) - O(n - ) as n + *; hence

(2.5a) and (2.8) show that

(ry)(n)l -9 const. log n, 2 • n < - (2.9)

LJEMA 2.1. If w/6 + Y is a solution of (2.1), then

Y(M ] r(E.n)(ry)(n)dn. 0 < & < (2.10)

where
r(~~,ii)~ -R 2 **~(.1

r~~) q (cTi) log n2

Proof. With the notation (2.3), equation (2.1) becomes

Differentiation of this with respect to 9 is legitimate if the resulting integral is

written as a Cauchy principal value; noting that EkE(E,n) - -nk (E,)), and integrating by

parts, we obtain

-~-~ J.,u.L. I Id. , (2. 12)

-6-



where the integral exists by the properties (2.2) of R -/6 + Y and because

*'(f) - OnrI as n * 0 (see [7]). We add (2.4) and (2.12), refer to the definition

(2.Sa) of FY, and integrate with respect to &; there results

. y( = ' q(E,n) - (Fy)(r)dn

We may integrate by parts because (for fixed e (0,-), as elsewhere) q(E,n) is

0(0 log 1/) as n + 0, and is 0(l 1 as n + -, and because we have the estimates

(2.7) and (2.9) for Fy. Accordingly,

E - E) o q 1(,n)(PY)(1)dn

and this is (2.10).

LIEMA 2.2. If w/6 + y is a solution of (2.1), then there exists an exponent

a e (1,2) such that Y(E) = 01oc) as F + 0.

Proof. In this proof we abbreviate (Fy)(nl) to FY (i), and similarly for other

functions of the same kind.

(i) For any c e (0,11, let & e (0,c] and rewrite (2.10) as

Y(E) - 1 c r(&,n)F (nt)dn + R (&,c), 0 < E ( c , (2.13a)

where, in view of (2.7) and (2.9),

IR (&,c)l -I : r(E.n)F Cy(n)dnli

-Ccnt,2 iil~ IE_~ Id + I f -lo n

n 2  log n d i

4 const.fS:/, log 2 du + E 2S 2

4 const. E/c , (2.13b)

where the constant depends on y but is independent of c. It is natural to define

G (n) - 2 sin{- + y(n)) - 1
Y 6

then G (n) - 3 y(n) as n + 0 and Y(n) + 0, and, by the definition (2.3),

3 (y(n) - w(n){1 + G (n)) - I + G y(n) + 0(0
2 ) as n + 0

Moreover, we can so define U , V and W that

-7-
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-{I. o + f °+O( 2 -)) - I - In G + O(n ,

Jq E n 0 N 0 Y

log(!~~ ~ fnZJ- o( G1 + O(n 2 ,) =Yn In . + O(nl
n0yn 0y n n 02

G y(n) = cos Y(n) - I + r3 sin Y(n) - /3 W (n)Y(n)

then

G (nI) + 0, U (n) * 1, Vy(n) * 1 and W (n) + 1 as n * 0 (2.
1
4j

and

F (n) - {V M)- U (T) - G (T)U (TI) - o GY + +6(TO

- r3 {V (n) - U (n) - G WU (n)) n j o WY + /13 Wln)Y(n) + 6 (n)
Yi Y 'V YV TI 0 'V N Y

2
where 8y (n) - o(n ) as n + 0.

Finally, define a linear operator L on the space C[0,c] by

(f)() = - I r(&,n)[{V (n)-uy(n)-Gyn)uy(n) 1 In w f + w (n)f(n)]dn (2.15)

and the integral equation (2.13) becomes

Vy() = (Ly)() + Sy (,c), 0 < E 4 c , (2.16aj

where
I c

S (E,c) - Py (&,c) + 1 0 r(l,n)6 (ndln - O(E/c) , (2.16b)
'V ' 3 0 Y

because

if " c~ r(&.,n)6 ,)dn 4 oosel IFo 2 E10 1 uj2 u < coner, cE (2.17)

1

* .4 (ii) For every e e (0,21, choose c = c(E) so small that
4

IVY(n) - UY(T) - GY()U () Ii - w11 Y(T)l < c for all T e Oc(c)J ,

this is possible by (2.14). For any a e [0,1) and any E e (0,4], define the Banach

space

x a = X (C(c)) = {f e C0,c()I • Ifll <-}

where

Consider the linear operator L defined by (2.15); we wish to show that L maps X

into itself, for e sufficiently small and for some a > , and that

-8-
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It is easy to show that Lf e C[Oc(e)J when f e xa  and we estimate ILfI aas follows.

* * (L,),,),j tr( r ( c joll + (1C+,lIfldn

C30n 0

4 - (l+C)Ifl c(e) (n) n + I )dT
6a 0  rCIz ,TI)J)d

.1- (1+:)(1 + MI 1 n log 1 n

r"w 1.0 a-
- (1+CNI + C)IfI kafo .Li.o u a du

where 0 < c(). It follows that

ILI • (1(+C 1 + - (a)

where

P CO) -,i; Ilog 1l-u I ad
~~~2 ,(uduudu

I log -327 uadu +20
3% T, :2 1 0o o u2

The first of these two integrals is evaluated in Section 3, see (3.11a)i in the second, we

set u - 1/x and integrate by parts; then
IWO tair 1- + dx
S- (-4 tan - + - , x (2.18)

2 a 2 l 2 xaa2-1)

To obtain a simple majorant, replace x by 1 in the last integral, which is then easily

evaluated; thus

(a) (tan - + - log(1 + /2)} - T(a), say.

NOv t(h) < 0.82, T(2) > 1.16 and r(a) > 0 on (0,l); hence there exists a number
2 4- 1 3

ae (1,2) such that p1(a) < T(O) 4 T(;) < f for all a e t0,;]. If we choose C

sufficiently small, then ILl(CO < 1 for all a e to,a].

(iii) With C and c - c(c) now fixed, the estimate (2.16b) of S may be written

S y() M 0(e) as C + 0. Hence S e X for all a e c0,1), and so the equation

f(E) = (Lf)(E) + S () has a unique solution fa e XC for each a e tO,a]. Since

-9-
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X CL C X0o these solutions are identical; in other words, f " f. for all a e o,ai

because each f a XO . We know that Y e X0 and satisfies (2.16a), whence Y - f 0 X

for all a e [O,;]. In particular, Y e X-, so that a may be chosen as the exponent in

a
the statement of the lemma.'I

Remark. We shall see from Lemmas 3.1 and 3.2 that the best possible exponent is the

number B1  introduced after (1.3), so that

2
____1 tan " 

= 1

(B is best possible if A1 # 0 in Lemma 3.2.) This corresponds to only the first term

of P(a) in (2.18), so that precise treatment of the second term is not worth while.

A.

a,

-10-
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3. The asymptotic expansion of 4()to three terms

* Our observation in (2.7) that (F.)(fl) 13 .(fl) as n 4 0 suggests that the integral

equation (2.10) be written

= 1 1 r(&,nOY(rl)dij + p (C, 0 < 1 ,(3.1)

/3 '0 .7

where

4L P,~ (E) - ~ ~r(E.f){(Fy)(l) - 3 Y(TI)}dTI + ~ 1 r(E,r1) (Fy)(n)dn (3.2)

From (2.7) and Lersma 2.2 we have

*(FY) (TO - 3 Y(n) -=0(n 2 ) As ni0 with a e(I

and it follows (by an estimate like (2.17) for the first integral in (3.2), and an estimate

like (2.13b) for the second) that p Y(C) - 0(t) as C + 0.

All the results to come will be consequences of (3.1) and (3.2). our plan is to boot-

strap from some expansion of 41(C) for C + 0 (at present, w/6 + o(& )) to an estimate

of p (C) (at present, 0MC), and then to derive a more complete expansion of 41(C)

from (3.1), regarded as a linear equation for y7 in which p is 'known'. The proof by
.5, .7

1' induction in Section 4 will follow this program to exhaustionj without the more explicit

'5 first steps in this section, it would probably be incomprehensible.

The Mellin transform ([121, p. 7) will be our main tool for analysis of (3.1). Let

f b-- piecewise continuous on (0,-), define *(x,s) - x*I 1f(x) for x >0, where

s - O+it e C, and assume that *(.,s) e L 1(0,-) for a < a < b. Then, for s in this

strip, we define the Mellin transform fof f by

f fs) J0 xf(x)dx (3.3)

we also write this as f(s)-j f(x). Note that f is analytic in the strip Re ame (a,b).

The inversion formula ((12], p. 46) is

f(x) - ~ i" x- f(s)ds, a < c (C b ,(3.4)

at points of continuity of f. The product formula (1121, p. 54) is
f(-s+A~~sBfl) 0 A+B-1I
f-A90BZ x 0u f(u)g(xu)du ,(3.5)

provided that ;(-s+A) and g(s+l) have a cocoon strip of convergence. Finally, we

record the following property ((21, p. 118) of the Mellin transform.

IC..0



if J"Ixaf(x)l p  < for some a e (a,b) and 1(.x
" 1 + 1(3.6)

some p e (1,2), then f(o+i.) e L,,( -,-), where + 1

Tb evaluate certain contour integrals arising from (3.4), and to state our theorems,

we *hall need the following lemma, a variant of which has already been given in [5] for a

different purpose. The significance of the exponents . in the lemma is evident from the

observation (a particular case of lAmma 4.2) that, if /3(1+6) = tan(lw/2) and 0 > -1,

then
= (0 r(C,'1)Tn8  = + a(t), 0 < E 4 1 , (3.7)

4
where a(C) is OM() and real-analytic on [0,1), and contains only odd powers of C in

its Taylor series about the origin. In other words, the linear integral operator in (3.1)

leaves the functions E almost invariant, merely adding to them such functions a, and

these latter turn out to be unimportant.

LIMIA 3.1. The only zeros of 4(1-9) + tan(s/2) in the half-plane Re a < 1 are

simpale zeros on the negative real axis. We denote such points by a = -%,f j - 1,2,3,...,

with < B 1 . Then 81 e (2j-2,2j-1) for all J, and B - 2J-1 + O(J " ) as j * -

(the 0-term is negative). Also

01 0 0.8027, 82 = 2.9066, 83 = 4.9383

Proof. Set a - 1 - 2z/w and z a x+iyi we have to solve

26 z + cot z - 0, x > 0

or equivalently, since no zero or pole of tan z is a solution,

z tan z - - - , x > 0
23

If this equation has a solution with y # 0, then the imaginary part of the equation gives

sinh 2 sin 2x
2y 2x

which is impossible (because sinh 2y/2y > 1, while - sin 2x/2x C 0 for 0 < x C i/2

and - sin 2x/2x < 1/w for x > w/2). The remaining assertions now follow from elementary

analysis of the points where the graphs of tan x and of -w/2/ix intersect, for x > 0.

-12-
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LEMMA 3.2. If is a solution of (2.1), then
-- w BI

j + AI + 0( ) as E 06 1
for some constant A1  and any I e 8 1,1). Here B1 is as in Lemma 3.1.

Proof. Mi) Define

Y (E), 0 < C 1,

' -0, <F,

and

h(0) - { (00 0 • C < 1

' ,Jo r(C,n)'Y( )dn, I < C

so that (3.1) becomes

gCl[) - .. j r(CF,1)g(n)dn + h(E), 0 < < -
3

since the integrand is zero for n > 1, and both sides are zero for C > 1. Setting

n - Eu, we arrive at a form suitable for the Mellin transform:

g(E) - -3 O R(u)g(Cu)du + h(C), 0 < C < * (3.8a)

where

R(u) - r(1,u)- - - log ," (3.8b)
2u

Because of the plethora of notation, we emphasize that g is a truncated form of

y - *-w/6, that h(C) is presumably of smaller order than g(E) as + 0, and that the

dependence of h on y is now implicit.
1 3

(ii) Ihe term h(C) may be estimated as follows. Let a e (jj) be the exponent in

leama 2.21 then for E 2 (and hence u C when we set n -u)

Ih ME) 1 -L "f lor(:,n)l I ly(n) Idn

I( caner. t J'A/Fo 'I ulu du
20

au

(const. E~ a #'C log I 1  a

-1
( conast. C log & ,

-13-
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and for 1 4 C 2 the integral is bounded by a constant. Since pT (E) 0() as

0 0, we have

Ih(i const. 0 < 1 (

const. I + log E), 1 <

It follows that h(s) exists and is analytic for -1 < a < 1, where a - a+it, and from

(3.6) that

4 h(o+i.) e L (-,") for all a e (-1,1) and all pl 2 (3.10)

(iii) To find the Mellin transform of the function R in (3.8), we recall that our

oriqinal kernel in (2.1) was

k(,,n) = lo

and note from [121, p. 192, that (with s = o+it)

J0 u Sk(1,u)du - - tan , -1 < a < I
25

Setting u = n/C for fixed E e (0,e), multiplying both sides by C and then integrat-

4' ing with respect to 9, we obtain

1 n-q(01)~ tan < a < I0s(s+1) 2

We may integrate by parts because I)Sq(1t,) is O(n
+
I log 1/n) as i * 0, and is

O(0(1) as nl* , and there results

-", n~q(n)dn " ta 2' -1 < 0 < 1

Set n i u and S - z-l then

- O- U u- 1 
log 2 du = - tan 21, 0 < Re z < 2 (3.11a)

u

that is,

;(z) tan 2 1 0 < Re z < 2 • (3.11b)

(iv) We are now in a position to take the Mellin transform of the integral equation

a~ 13
(3.Sa). By Lema 2.2, q(E) - O(CM) as t + 0, with a e (,) therefore g(s) exists

and is analytic for 0 > -a. We have just shown that h(s) and R(-s+I) exist and are

analytic for -1 < a < 1. Hence, if -a < o < 1, we may apply the Mellin transform to

(3.Sa) and use the product formula (3.5) with A = I and B 0:

g(s) -- R(-s)g(s) + h(s), -a < a < 1

-14-
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or, equivalently,

ql) hs)= ishl -,-a < 0 < 1 *.(3.12)

where

R(1-S) -- tan(su/2) (3.13)
i3-J;(1-s) ,'i(1-s) + tan(sx/2)

The inversion formula (3.4) gives, for all t e (0,-)N11M,

g(E) -hME) f7 1: E(5 )()ds, -0 c < 1.(3.14)

Cv) lAt E e (0.), so that g(E) - yCC). since h(C) - OCE) as E 0, it

suffices to show that the right-hand side of (3.14) behaves like A IC + 0CC ) for some

constant A1  and any f e (0 1 1). We prove this by moving the path of integration as far

to the left as our knowledge of h allows, and taking the residue at any pole of the

integrand between the path in (3.14) and the new one. The details are as follows.

Given c e (-a,1) and I e (8,10), define r Hto be the (positively directed)

rectangular contour with corners at c t iN and -L t im for some large 14 > 0, and

consider the contour integral

I? Jr, ECsQ(s);(s)ds

The contribution of the horizontal parts (-I < cr < c, t - tK) of r tends to zero

as K4 + -, because (a) It -C with 0 < E < 1; (b) the fact that tnur2

as t + V with 0 fixed implies, in view of (3.13), that Q(s) - OW(I )i (c) the

rdemman-Lebesgue lemma, applied to the definition integral (3.3) of h(s), shows that

h(s) 40 as t + V with a fixed.

Since h(s) is analytic for -1 < a < 1, we conclude from (3.13) and Lema 3.1 that

the only singularity of CQ(s*hs), with -1 < a < 1, is a simple pole at sa -

Accordingly,

-liu, i ETJr1 CQ(s)h~s)ds

E res Q~s hA 1  E A 1C , say ,(3.15)

and so

.. .. .. .. . . .



g -MhE) - A F + -" Q('L+it)h(4L+it)dt (3.16)

We bound this last integral (without the factor I /2w) by means of H61der's inequality,

o A noting that Q(-t+i.) e L 3/2(-,i) because 9(s) = O(t- ) as t + ±, and that

h(-t+i.) e L3 (' ,-) by (3.10). As we remarked earlier, the desired result now follows,

because g(E) a Y(E) for C ( 1 and h(E) = O(E) as E + 0.

Remarks. 1. As was to be expected from (3.1) and (3.7), we cannot evaluate the

coefficient A1  in Lama 3.2s in (3.15) we have defined it in terms of the global behavior

of Y.
2. tokes conjectured (see [1], pp. 194 and 199) that the profile of an extreme wave

is convex between the crest and the trough; in other words, that *(&) is non-increasing

on (0.-). Now Lama 3.2 and analysis of the equation which results from differentiation

of (2.1) imply that C*'() - A1 1  + WEit). Therefore we expect that Al 4 0, and a

calculation shows that this corresponds to b1 ) 0 in (1.4). Numerical evidence ([61,

equation (2.10) with the value 8 - 0.131 on p. 776; [141, Table 1) suggests that bI > 0

and hence that A 1 < 0.26 1

3. The term A2 C in our next result has a character quite different from that of

A ICE1 instead of arisinq from (3.7). it arises from terms that are essentially souares of

the first perturbation, and so A2 is determined uniquely by A1 .

THROCWM 3.3. If *is a solution of (2.1), then

6, . 1 2 1+'' A( I E 1 + J2t 0 +o(t= as E; + 0

S for an m @(21,+ ), ere 1 and I are as in Lmma 3.2, so that 1 £ (01.1),

and 11A,6
S2 2

(4+6O + 1)(tan B T)A1 
2

A I1 12
A2 -- 23(1+0 2 (i(1+2I )-tan B 1 :0.1341 A1

Proof. We shall use the notation in the proof of 1Amm 3.2, and shall begin by

showing that the previous estimate (3.9) of h can be sharpened, by means of the result of

Lame 3.2, to

-16-

S. . • . . ..... ,* . .. .•• . . . . . . . . . . . . .
C .C v.. . .. .*

% %



20 a0+

Wh() - C I + C2 + OR 0 IC C I, (3.17aj

I-1

Ih(C)l C const. - (1 + log E), 1 < E (3.17b)

where C1  is a constant of no interest, because ultimately it will drop r'ut of the

integral equation, and C2  is a constant that is known in terms of A1 . With this

estimate in hand, we can move the path of integration in (3.14) further to the left than

was possible before. Taking due account of the poles of the integrand between the path in

(3.14) and the new one, we shall obtain the result of the theorem.

(i) Let c e (0,1]. A straightforward calculation gives the following.

(EY)(n) = 2w(n) sin(! + y(n)}4.' 6

1 2281 0 1 +1
- I + V3 ) - A 11 + ) ,

2 1

(nY)(M - 3 y (n) - log(.! n ine + n, (LBnY _ I - 3 y(ie)

4+80 +0 2 0 B+
I 112 1 1 +

I' rlCo){lrw~ln) - r yl)dn - AE0 2 +O2 + ) , +3.18)

whore the constant C0  will be a part of C1  (and is therefore of no interest), and

C 2 - - 1 1 3.19)6(1+01) 21+20 1)

The other term in the definition (3.2) of r LYM is

1 -- 1 ", log(1 -

M & k-I co (y)(n din(3.20)
k Y1 k I 2k '

-17-
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eat

where the integral is 01(k) as k + -, so that the series converges for ( 1.

Equations (3.18) and (3.20) imply that
261 61+L

p Y + c2E2 + o1
1

and thus prove (3.17a). while (3.17b) is a previous estimate.

(ii) Define

20

h (+) =

O, < E

and h2 = h-h 1 . Then, for 0 > -1,

S C + C2

8 +1 s+20 1

while h 2(s) exists and is analytic for -0 - < < 1, and h2 (o+i.) e L ,(-m,-) for

all a e (-6 -1,1) and all p' > 2. The obvious analytic (more precisely, meromorphic)

continuations of h I and h into the strip of convergence of h 2  will also be denoted by

h and h, respectively.

We can now proceed from (3.14) as in the proof of emm 3.2, step (v), except that now

we move the path of integration to a - -m for any i e (20,B +1), and collect the

residues of the poies of i -Q.s)h() at s - -6, - 1 and -20 1 . Since Q(-1) -1,

there results

g() -hME) = - C I + c2Q(-2 1

2W

the last integral is bounded as before since h (-m+i.) and h (-.+i.) are both in

L 3( Substituting for h(C) from (3.17a), we have

81 261
YC) - AI Ci(Q(-20 + 1} + 0() as

1 2  - 1
+WE asC 0

where C2  is given by (3.19) and Q(-20 ) by (3.13).

-18-
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4. The asymptotic expansion of V1E) to any number of terms

4.1. Notation

,3' Let No - (0,1,2,... 1, i = (1,2,3,... 1 and a = {B1,80,B3,... 
'  

where the numbers

are as in Lemma 3.1. We shall prove in the Appendix that the are transcendental

numbers.

An elaborate notation is needed for the exponents in various series that we shall

construct, because (a) the non-linearity in (2.1), and the presence of the weighting

function w there, cause the exponents in the expansion of * to form a fairly

complicated sequence, (b) further exponents enter, and finally depart, during the course of

the construction.

In what follows (al,...,mr+i) is a multi-index: mi e No  for i = 1,...,r+1 and

, r is any element of V. Define

Am+12 :m +...+m + + + 2
I 1 r r r+1 I r r+1

since A is a countable set, we may write A = { 1,A2 ,A3,... with ( J+I* The

first few numbers A are

O1, 201F1 + 2, 2 # 40 1  20 1 + 2. 61 + 02' 4, 50 1 , 301 + 2, 
2
0 1 + 02 f

The following subsets of A will be needed.

A (m16 +...+ mror + mr+12 : m +...+ m r ; 1)

s that

A 1 A 
6 u (2,4,6,...

and

A -(2) u (m +...+ma6 +ma 2: a +...+ m + m )2)
3 1 1 r r r+l I r r+l

so that

A -A 3u B

Thus each element of A involves at least one of the B we expect the exponents in the

expansion of * to be in AY* The exponents in A 3 arise if, for example, we combine

three series as follows: form the product of two series with exponents in A and add a

series with exponents in (2,4,6,...1.

Truncated subsets will be denoted by

-19-
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A (n) " (A e A A A {x e A n

A3(n){A e A3 j 4 n)

B(n)-f8 e B : 8 A.' 4 sn) {j e • j n .

4.2. Bootatrapping from Y to p

We now prove that a given expansion of y, with exponents in A (n), implies an

expansion of p with exponents in A 3(N) {1,3,5,... ), where N ) n+l. This will

alloy us to improve the given approximation to y by the method that we used to pass from

Lesma 3.2 to Theorem 3.3. We shall prove in Theorem 4.5 that, if A 3(N) S(N) - 0, then

y has an expansion with exponents in the larger set A0(N). Hence, if A3  B - 0 (which

is a number-theoretic problem addressed in the Appendix), then y has an infinite

asymptotic expansion with exponents in A 0

We begin by expanding the function FY - riy in the definition (3.2) of 0 y then we

establish two basic properties of the linear integral operator in (3.1) and in the first

term of p • The second term of P has a very simple expansion. Combining these

results, we obtain the expansion of py for a given expansion of T.

LZIM 4.1. Suppose that, for certain constants Air

y(n) - IX eA ( W Ain + O(N ) as n*O , (4.1)

where A (n < and P + o, e A (1,3,5,... ). Define N N(n,j) PX- n n+l

A - max(A eA < V + 1}

(Since An+1 4 A n + 1 < U + Olt we have N(n,M) • n+l.) Then

(FY)(n) - /3 T(n) - 1()1 + OI as n + 0 (4.2)

where the coefficients Bj depend only on the Ai in (4.1).

Proof. Again we abbreviate (Fy)(n) to F y(q), and similarly for other functions of

the same kind. We have

-20-
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* IY(n) 2w(ln) sin[- + y(n)}
6

where

w(T) -(1+i2 / (1+b 21_ 1 + w Ck , say, for n < 1

Define two new operators H and 3 by

H (') - U (n) - 1 -W/ y(n)

= w(n)(cos Y(n) - I + /i[sin y(n) - y(n)]} + (w(n) - 1}1( + /3y(n) , (4.3)

and

1I

Let us now restrict attention to those n, say n 4 n., for which j.7(n)I ( . Then

dF (n) n- [n Log {1 + J (n))]

d -nU 1 12 + 13
7-1 2 +3 -3.. 2], 3y iy(n)

-1(1) + d 1 n2 1 3-z (1)-,+ {--iJ +-Ti -... }
'Vdi 2 'V 3 'V

whence

1 +q2 +I 13
F O1 / n) - H , - (,-) + (n) d 2 y J-.. I . (4.4)

Although this may seem a very involved formula, it provides a good way of expanding

IF M- /iy(1), given an expansion of Y(TI).1%T

,quation (4.3) yields

2k 2 43 5H (TO ){ -, -+ L- -..+ r3 + 1
k+ 1

k- 1

.1A ieA 3() D in + O0 0 1 (4.5)

where the constants Dj depend only on the Ai in (4.1) (and on the Ck). Consider now

the remaining terms on the right of (4.4). Since

* W (ri) Y-

I 'V-'

-21-
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equation (4.5) ensures that the expansion of J has exponents in A, and hence that the

expansion of

d {r, j = (1-m)J
m 

+ m j"'-{V'3 y + H ), 2
dn- Y Y Y Y

has exponents in A 3 . Since r3 Y + H y, and hence J y, are known with error O(qo), it
3 1+P I)

follows that jm and -i + H ) are known with error 0(n for m > 2. We
Y Y Y

apply those two conclusions to the terms In (4.4) that follow H , and the lemma is

proved.

LEMMA 4.2. For e (0,1) and p > -1,

tan(pw/2) p + _ E 2k- if p 4 (1,3,5.... 1

:: +p + Ik-I k(i+p-2k) --

J' r(En)EPdn = Ep log 1 + 2

0W(+p) N(I+p)

1: E 2k-1
+ e\{~ - if p e (1,3,5,...1
+ "keN\{_.2 k(,+p-2k)

2

Proof. Denote the integral by Ip (t), and define

hen , = { , 1, so that *p(.) - p for a > -pi: 0, < C,
-.' Then

I .(C) r(,,) , (n)dn (0 ( < 1)

r(1,u) * (EU)du

p-R(1-9# p (s) for - rainfp,1} < a < I

where we have used the product rule, the notation r(1,u) - R(u), and the statement in

(3.11b) that R(1-S) exists and is analytic for -1 < a < 1. By the inversion formula and

*" (3.11b),

(E jc' i
-  

tansw/2 ) <

p 2W1 c-i- (8-1)(s+P) da, -uinp,1) c

-22-
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Consider the integral (of this integrand) around the (positively directed) rectangular

contour with corners at c ± 12n and -2n ± i2n; here n 6 N. On the parts a - -2n,

Iti 4 2n and -2n 4 a C ce t - ±2n of this path, Itan(s/2)I is bounded; hence the

integrand is O(ola-2) there, and the contribution of these three sides tends to zero as

n + . Accordingly, I P(E) equals the sum of the residues at poles with a < c. If

p f (1,3,5,... 1, these are simple poles at s = -p and s = -1,-3,-1,... if

p e (1,3,5,... , there is a double pole at s - -p, and simple poles at s - -(2k-1),

k e NO{1- Evaluating the residues, we obtain the result of the lemma.

2

LEMA 4.3. If p e (2m+l,2m+3) for aoe m e No  and If()l 4 const. n
p
, then, for

c 6 (0,1),

Proof. We have

12
r(,f(,)d,1 - r(,.,)f(,,)d, - log(, -,..,,,>d,

0 r(Iuf( u~d + f- j

w k F
k-m+2

The assumption that lf()l 4 conet. p, in which p is not an odd integer, ensures that

the first, third and fourth integrals in this expression are respectively O(FP),

O(Cp-2k
+
.

) 
with p 2k-1 and 0(E

p
-
2k + l ) 

with p < 2k-Is the fourth is (EP -2k /k)

as + 0 and k + 0. This proves the lema.

LEMA 4.4. Let the hypotheses in Lea 4.1 hold, let {odd) denote the set

(1,3,5,... I of odd positive integers, and let 2P-1 be the largest odd integer less than

U + 01 . Then, as 4 + 0,

-23-
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Y k1 Fk I eA '6 3 (N)\U 
1 jA 3 ~8 (N)(odd} ) o (4.6)

+

where

-P tan(k : /2) D G 2(47

but the coefficients Zk are defined in term. of the global behavior of y (and not

merely in term. of the previous Ai an 2 1).

Remark. In (4.6), the set At (N) n (odd) Is probably empty for all N, but, if it

is not, the exponents in it cause no complication (in contrast to any exponents that there

may be in the set A 3 Mii n BMN to be considered presently), because the logarithmic terms

V in (4.6) will be cancelled when we compute the corresponding expansion of 'V.

Proof. Recall from (3.2) that

P (E)~ r(C.rn)((rr)(n) /3 Ii'(n))dn + ~ ~r(t,n)(Fy)(,)di (4.8)

and observe that, for E~ e (001),

1211r(C,q)(FY)(n)dl I"( - L. )(~

- 2k-1I2

k 1I

where the last integral In OWk 1  as kc - Because (Fy)(in) - O~log ni) as nl +

For the first integral in (4.8), we apply 1an 4.2 to the terms a "JIn (4.2), and

lamse 4.3 to the 0-term there, recalling that U + 0B is not an odd integer. The terms of

fr kE2- (where k09adck -O(k2 ) as k +1) that result from the B 31 in

(4.2), from the 0-term there and from (4.9) are all collected in the first sum of (4.6i

if 2k-1 < p.8 (so that k 4 P) or in the 0-term of (4.6) if 2k-i > ii+8 I In the

second sum of (4.6) we have replaced A 3(UP%.(Oddl by A 3(N),N because (4.7) shows

that F - 0 when )~is an even integer.

-24-



4.3. The expansion of Y

la 4.4 provides a generalization of step (i) in the proof of Theorem 3.3, and we

are now ready to generalize step (ii). To avoid a conceivable but highly improbable

complication, we make

ASSUNPTION A(C). The sets A3 (N) and B(N) are disjoint.

The reason for this will be explained after the proof of Theorem 4.5. We have veri-

fied Assumption AM) numerically for N 4 100, and conjecture that it is true for all N.

ITiZOlf 4.5. If the hnotheses of lamma 4.1 and Assumption AME hold, then

Y()m 1AjeA^N) A i + (91) as C + 0 ,

for some v e (ANA *+I). Here a new coefficient Aj, with j such that

Xj e A (")\ A (n), is determined by the previous coefficients Ait with i such that

X e A0 (n), if and only if A j m ().

Proof. Again we use the notation in the proof of IAmma 3.2. In view of (4.6), we

define

P 2k-I ~ ok I -I ZkC i + 0 eA 3(N)n(odd)G Clogf k-) If 3 j 3= J~f o(~ 1

0 if 1 <,

and h2 - h-h1 . Accordingly, h2(c) - PY(C) - hl C) if C 4 1, and h2 1C) -

O(C "1 log C) as 4 + -, by (3.9). The smallest exponent in h () is 1i hence, for

>0 ) -1,

S FeA ) + G
1 I+2k- + G3W @+A X::3 { odd) 2

while h2 (s) exists and is analytic for -U-8 C 0 1, and h 2(a+i.) L ,C-,) for

all a 6 (-U- 1 1) and all p' > 2. The obvious analytic (more precisely, meromorphic)

continuations of h and h into the strip of convergence of h2  will also be denoted by

h and h, respectively.
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Lot e e (0,1). We proceed from (3.14) and move the path of integration to a -V

for any v e (xA,U+oI); the remarks, in the proof of Leam 3.2, regarding the contribution

of paths t - 4 remain valid when the t there in replaced by v, and E-9Q s)h(s) has

no singularities for a e (-e-B ,-N ). There are four sets of poles between the original

path of integration (a - c) and the new one (a = -v); we consider one set at a time.

(a) The points a = 1-2k, k S f1,2,..,P}, are simple poles of hl, and, since

Q(1-2k) = -1,

)' residues = - P 1 k2k-1

(a) 
k1i

(b) The points s - -'>, where e. A 3 (N)%9, are simple poles of h I and are not

poles of Q by Assumption A(N), so that
I residues - IX eA3(N)\* F Q(-X ) K
(b) 1 3

(c) The points a - -Xi, where A e A 3(N) n (odd), are double poles of h, and

1 3 43

Y residues -x (u)(odd } G{ log I + i- (I+X ) •)

(C)jg 2

d) The points s -Aj, where A I e(3), are simple poles of Q and distinct from

those of h I by Assumption A(*), so that

(d residues I WAjiB(N) HN1  ,

where

Hi - ra _ h(-A:) • (4.10)

Since e e (0,1), we have g(E) - Y(C) and h() - Py (E) equation (3.14) yields

T(Y) - P (M) + I residues + " f-C- Q(s)h(s)ds

2k-i
We substitute for P (E) from (4.6) and for the residues, noting that the terms RkE

and those containing log(1/), in (4.6) are cancelled by the residues; there results

A A

-A A()UF (I+g(-A 0C~ j - I G (I+k K j

jSA3 (\ j 12 
1 A 3 (N)n~odd) I

(4.11)

A V

+ EJ( + J 1- -itQ(-V+it)h(-v+it)dt + O(E 1+ esm + 2w
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:a,:

where Q(-V+i.) e L 3(-'), because Q(-v+it) -O(t " ) as t + .us, and

h(-V+i.) e L3(,), so that the integral (without the factor V/2w) is bounded, by

HWlder's inequality.

We claim that all the exponents A in (4.11) belong to A (N). Inde*d, if

A e A\A, then A e (2.4 6,... 1, and this is impossible in (4.11) because there

X1 4 N or A e (odd) or A e B. Since in (4.11) each A X AN, it follows that

A e A C().

Comparison with (4.1) shows that in (4.11) the coefficient of C must equal A

whenever X1 e A0(n). Consider the coefficient of C when A1 e A0 (M\ A(n) g if

X 4 B(N), then (4.7) and IAna 4.1 show that the coefficient is determined by the

previous Ail if X i e B(N), then (4.10) shows that the coefficient is not so determined.

Of course, we relabel this new coefficient A1  in either case.

Piumark. Assume that the hypotheses of ma 4.1 hold but that Assumption A(N) is

false, for some particular n and U(nU). Then there exists an exponent

Xa e A 3(N) n B(N), and Q(s)h(s) has a double pole at s = -4a This causes the term

with j = m in (4.11) to be replaced by

F E aWb log2 ~

where a, b are constants and b 10 0. At the Nth stage (and perhaps earlier), the hypo-

thesis (4.1), with n replaced by N(n,P), must be modified to include the logarithmic

term, at still later stages, higher and higher powers of logarithms accrue in the process

of expanding FY - /-3(.

COROLLARY 4.6. If * is a solution of (2.1) and A 3 n 9, then

A
*( + Y eA A1  as & + 0 (4.12)

isi

'4 in the sense of an asymptotic expansiont

o( n ast)
6 AA(n9(C) -- 6LAA(n) AC =0C o( as -. 0 ,

for all n 0 N.
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COROLLARY 4.7. if A3 n B - g, then the complex co-ordinate z - x+iy is related to

the complex potential X = #+if b

Z(X) - -ig 1
3
(. iX)

2
/
3
(1 + K (iX) XI as x + 0 , (4.13)

where the constant g is the gravitational acceleration, arg(iX) e [-w/2,w/2], and the

coefficients Kj are real. If the set (1} U B is linearly independent over the

rationals, then the sum in (4.13) is only over exponents in

A {m 0 +'" mr : m +...+ M 10
6.0 1 1 r r 1 r

in other words, K = 0 whenever Aj e A -,A

Proof. On the image Y = 0 of the free boundary, we have

-a4{ + kk) > 0 (4.14)

k-1
where a and ck are constants, and the series converges for sufficiently small values of

*J. Define 0(0) - *(U())i it is a basic hypothesis in the derivation of (1.1) that x

and S are odd functions of 0, while y is even. Accordingly, (4.12) and (4.14) imply

that

5(0) - ( + (j ) eA Bj 101 as 0 * 0 (4.15)

for certain coefficients Bi (which are not those In (4.2)). Moreover, it follows from

the boundary condition of the basic problem (or, equivalently, from (1.1), from the fact

that 0(0) is the boundary value of Im log(dz/dX), and from suitable choice of the

additive constant in Pl log(da/dX)) that
as . ) 8, 1-1/30(f)) _'1%{)

- (-3q sin /, e (-c,c]\{0), -0 , (4.16)

for some constant c > 0. Using (4.15) in this formula, we obtain (4.13) for z(O) (that

Is, for arg(ix) - -w/2 or w/2)i that the K, are real follows from the symetry.

To prove that the asymptotic series for z(x) in (4.13) is the only appropriate

extension (into the half-plane I < 0) of the series for z(f), we let h denote the

difference between two such extensions to finitely many terms. It then suffices to prove

the following: if h(X) is analytic and bounded in D - {X : 0 < lxi I c,

" arg(iX) 4 2
}
, and if, for some constant 0 > 0, we have h(4) - 0( 1) as 4 * 0

(with arg(LO) - -w/2 or w/2), then h(x) - O(lIXI') as X * 0 in D. Now this follows

-28-
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from application of the Phragagn-Lindelf theorem ((11], p. 176) to the function f

defined by f(X) - X -%(X)l a suitable auxiliary function is l(X) - expf-(i)", 1/2).

It remains to prove that, if the set (1} U 3 is linearly independent over the

rationale, then X, = 0 whenever A e A', A8 0 . Suppose that

a a
.-1/3.3 3 1 n

s(O) - -. % i*12 3{1 + b (i*) +...+ b (i)n + k(if) + 0(11M

where 0 < a1 <...< % < X < , each a eA and A e 6A\AO O. We know, from our1 n j 6,0O ,

construction by way of (4.16), that this approximation may be differentiated term by term,

and that the exact function z(f) satisfies the boundary condition of the basic problem.

Then a slight variant of a calculation by Norman ([91, p. 262) shows that, under the

foregoing hypothesis, the coefficient k 0 O. Repeated application of this arqument proves

the result.
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. . . . . . . . . . . . . .

Appendix. On the numbers J.

We recall that 0 denotes the j-th positive root of FI(1+B) = tan(Ow/2); its

simplest properties were noted in Lerma 3.1. We now probe a little deeper.

4 LEMA A.1. Each number B is transcendental.

Proof. We abbreviate S to B for any fixed j e N. It was shown by Grant ([4],

. **~p. 260), albeit somewhat tersely, that 0 is irrational. To prove it transcendental,

* assume the contrary: that 0 is an algebraic irrational number. The equation of which

'P 0 is a root may be written

1+u/Iir(1+BS)
e 6 

= +•(A.1)
1-i( 1+B )

Here the right-hand side is an algebraic number (because 0 is one, and the algebraic

numbers form a field), so, therefore, is the left-hand side. In other words, (-1) is an

algebraic number. But this contradicts the Gelfond-Schneider theorem ([10], p. 76), which

states that ab is transcendental whenever a is algebraic (and neither 0 nor 1)

and b is algebraic and irrational.

Remark. In Corollary 4.6 we assumed that the sets

A3 . (2) U (m 1 +...+ mr r + ar+12 am I +...+ mr + mr+1 • 21

and

B - (01,00,... 

are disjoint. It is clear that the truth of this assumption would be implied by the truth

of the following, very natural

Conjecture. The set (11 u B is linearly independent over the rationals.

(That is, if x1,....xk are distinct elements of {1) U B, and a, ... ,ak are

rational numbers, then X - 0 implies that a, " k - 0.) Unfortunately, our

only result in this direction is the following.

THEOREM A.2. Lf J 9 k, then the set (1,I0. Bk ) is linearly independent over the

rationale.

Proof. Assume the contrary: then there exist integers p, q and r, not all zero,

such that pO + qO k = r. Neither p nor q can he zero; we may suppose that r • 01
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then at least one of p and q must be positive, say p > 0. Now

i) eiwr je p i +iii+ ) p l+li(1+B k q

j k

by (A.I)l since 0 k  (r-pBj )/q, we have

(-I) )r( _ir(.1+. j 8 ) lir_ (1 + r-P4)) (S1+iV(1+O ))P{+i/3(l + r-p ))q
.....))= (+3(B }iitji . (A.2)

q q

Suppose that q > 01 expanding both sides of (A.2), and re-arranging the result, we obtain

i/3 P1 (0 J) = P2 (0i ) I

where P, and P2 are polynomials with (real) rational coefficients, and Bj is real.

Rence each polynomial is zero, which makes B an algebraic number and thus contradicts

Lema A. 1.

If q < 0, we re-write (A.2) to have positive exponents p and -q on both sides,

and argue as before.
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ABSTRACT (continued)
W% k P n P s k

4 *(s) - + Ia s +0(s ) as s+0 , (*)
n=l

to arbitrary order; the co-ordinate s is related to distance from the crest as
5 . measured by the velocity potential rather than by length. The first few (and

probably all) of the exponents p n are transcendental numbers. We are unable to
evaluate the coefficients a explicitly, but define some in terms of global
properties of f, and the others in terms of earlier coefficients. The derivation
of (*) includes an assumption about a question in number theory; if that assumption

m
should be false, logarithmic terms a s (log s) , with m a positive

(lo nj
integer, would enter the series at very large values of n.

Our results confirm the heuristic calculations of Grant [4] and Norman [9],
and, in effect, remove a tentative element from certain statements in those papers.
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